

Studies of a warm window coupler design (mechanical view)

by Cornelius Martens, DESY

- Introduction in TTF-Coupler III
- Shifting cold window in warm position
- One window design and waveguide tuning
- Design of pumping port

Introduction in TTF-Coupler III

- Third design of coaxial couplers at DESY
- Two windows system with cold window (70K) and warm window (RT) in coaxial line
- Seperate cold part for cavity assembling
- Three Bellows in coaxial line, one for tuning-rod.
- mechanical tuning for both parts: antenna and cold window
- ± 10 mm tuning movement, ± 15 mm movement in Cavity plane
- Copper covered surfaces on outer and inner conductor

TTF-coupler-III in Detail

Problems of existing design

Shifting cold window in warm position 4,5K-Pipe 70K-Connector **→** λ/2 4,5K-Connect dr -MMM-±10mm One Bellow possible Shifting cold ceramic with $\lambda/2$ to warm window $\lambda_{\circ} = 230 \text{mm}, 1,3 \text{GHz}$

Problems and activities when shifting cold window

• Modifications of cryogenic-vessle (RF- and mounting concept doesn't change)

• Antenna is longer => risk of antenne deformation => new antenna design

• Harmonic bellow concept => new bellow design and RF-simulation is necessary

• Position of antenna tip was unclear => guider for bellows

Design for a "light" antenna

One window design

Only one warm window in coaxial line:

- Warm window temperature must be clear (contact conditions and heat flow: 4.5K, 70K, RT)
- Atmosphere must be clear (for example waveguide in SF6)
- New RF design for WG transition and Bias is necessary

Waveguide tuning

Reducing costs with tunable waveguide?

• Three instead of four bellows, no tuning rod. But: Bellows in WG-system are necessary for mechanical

Design of Pumping Port

How to increase pumping power:

- bigger crossection
 (CF63 instead of CF35, CF63 cutted)
- increase number of pumping-ports for example: 4mm Slots, 9x

Version	Crossection/mm ² (%)
Koax Ø62x27	2447 (100%)
CF35 (TTF-Coupler III)	962 (39%)
CF63, 9x slots	1433 (59%)
2x CF63, slots	2866 (117%)

Tab: Koax. crossection and pumping crossections for diff. designs

Crossection of ,, warm part"

Pumping port with slots

Two instead of one port

Summary

- Shifting cold window means a redesign of the crygenic vessle => one instead of two windows is useful
- Mechanical tuning of waveguide seems possible and easy but won't reduce costs
- Redesign of pumping port and bellow guider is necessary
- Reducing costs: simplify geometry and reducing the number of parts. Perhaps: Minimize funktionality (What is not necessary? Which diagnostics?)

(Rotate cold part in down position)

